
Chapter 2

Tutorial lessons 2

2.1 Mathematical functions

MATLAB offers many predefined mathematical functions for technical computing which
contains a large set of mathematical functions.

Typing help elfun and help specfun calls up full lists of elementary and special
functions respectively.

There is a long list of mathematical functions that are built into MATLAB. These
functions are called built-ins. Many standard mathematical functions, such as sin(x), cos(x),
tan(x), ex, ln(x), are evaluated by the functions sin, cos, tan, exp, and log respectively in
MATLAB.

Table 2.1 lists some commonly used functions, where variables x and y can be numbers,
vectors, or matrices.

Table 2.1: Elementary functions

cos(x) Cosine abs(x) Absolute value
sin(x) Sine sign(x) Signum function
tan(x) Tangent max(x) Maximum value
acos(x) Arc cosine min(x) Minimum value
asin(x) Arc sine ceil(x) Round towards +∞
atan(x) Arc tangent floor(x) Round towards −∞
exp(x) Exponential round(x) Round to nearest integer
sqrt(x) Square root rem(x) Remainder after division
log(x) Natural logarithm angle(x) Phase angle
log10(x) Common logarithm conj(x) Complex conjugate

In addition to the elementary functions, MATLAB includes a number of predefined

12



constant values. A list of the most common values is given in Table 2.2.

Table 2.2: Predefined constant values

pi The π number, π = 3.14159 . . .
i,j The imaginary unit i,

√
−1

Inf The infinity, ∞
NaN Not a number

2.1.1 Examples

We illustrate here some typical examples which related to the elementary functions previously
defined.

As a first example, the value of the expression y = e−a sin(x) + 10
√
y, for a = 5, x = 2, and

y = 8 is computed by

>> a = 5; x = 2; y = 8;

>> y = exp(-a)*sin(x)+10*sqrt(y)

y =

28.2904

The subsequent examples are

>> log(142)

ans =

4.9558

>> log10(142)

ans =

2.1523

Note the difference between the natural logarithm log(x) and the decimal logarithm (base
10) log10(x).

To calculate sin(π/4) and e10, we enter the following commands in MATLAB,

>> sin(pi/4)

ans =

0.7071

>> exp(10)

ans =

2.2026e+004

13



Notes:

• Only use built-in functions on the right hand side of an expression. Reassigning the
value to a built-in function can create problems.

• There are some exceptions. For example, i and j are pre-assigned to
√
−1. However,

one or both of i or j are often used as loop indices.

• To avoid any possible confusion, it is suggested to use instead ii or jj as loop indices.

2.2 Basic plotting

2.2.1 overview

MATLAB has an excellent set of graphic tools. Plotting a given data set or the results
of computation is possible with very few commands. You are highly encouraged to plot
mathematical functions and results of analysis as often as possible. Trying to understand
mathematical equations with graphics is an enjoyable and very efficient way of learning math-
ematics. Being able to plot mathematical functions and data freely is the most important
step, and this section is written to assist you to do just that.

2.2.2 Creating simple plots

The basic MATLAB graphing procedure, for example in 2D, is to take a vector of x-
coordinates, x = (x1, . . . , xN), and a vector of y-coordinates, y = (y1, . . . , yN), locate the
points (xi, yi), with i = 1, 2, . . . , n and then join them by straight lines. You need to prepare
x and y in an identical array form; namely, x and y are both row arrays or column arrays of
the same length.

The MATLAB command to plot a graph is plot(x,y). The vectors x = (1, 2, 3, 4, 5, 6)
and y = (3,−1, 2, 4, 5, 1) produce the picture shown in Figure 2.1.

>> x = [1 2 3 4 5 6];

>> y = [3 -1 2 4 5 1];

>> plot(x,y)

Note: The plot functions has different forms depending on the input arguments. If y is a
vector plot(y)produces a piecewise linear graph of the elements of y versus the index of the
elements of y. If we specify two vectors, as mentioned above, plot(x,y) produces a graph
of y versus x.

For example, to plot the function sin (x) on the interval [0, 2π], we first create a vector of
x values ranging from 0 to 2π, then compute the sine of these values, and finally plot the
result:

14



1 2 3 4 5 6
−1

0

1

2

3

4

5

Figure 2.1: Plot for the vectors x and y

>> x = 0:pi/100:2*pi;

>> y = sin(x);

>> plot(x,y)

Notes:

• 0:pi/100:2*pi yields a vector that

– starts at 0,

– takes steps (or increments) of π/100,

– stops when 2π is reached.

• If you omit the increment, MATLAB automatically increments by 1.

2.2.3 Adding titles, axis labels, and annotations

MATLAB enables you to add axis labels and titles. For example, using the graph from the
previous example, add an x- and y-axis labels.

Now label the axes and add a title. The character \pi creates the symbol π. An
example of 2D plot is shown in Figure 2.2.

15



0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x = 0:2π

S
in

e 
of

 x

Plot of the Sine function

Figure 2.2: Plot of the Sine function

>> xlabel(x = 0:2\pi)

>> ylabel(Sine of x)

>> title(Plot of the Sine function)

The color of a single curve is, by default, blue, but other colors are possible. The desired
color is indicated by a third argument. For example, red is selected by plot(x,y,r). Note
the single quotes, ’ ’, around r.

2.2.4 Multiple data sets in one plot

Multiple (x, y) pairs arguments create multiple graphs with a single call to plot. For example,
these statements plot three related functions of x: y1 = 2 cos(x), y2 = cos(x), and y3 =
0.5 ∗ cos(x), in the interval 0 ≤ x ≤ 2π.

>> x = 0:pi/100:2*pi;

>> y1 = 2*cos(x);

>> y2 = cos(x);

>> y3 = 0.5*cos(x);

>> plot(x,y1,--,x,y2,-,x,y3,:)

>> xlabel(0 \leq x \leq 2\pi)

>> ylabel(Cosine functions)

>> legend(2*cos(x),cos(x),0.5*cos(x))

16



>> title(Typical example of multiple plots)

>> axis([0 2*pi -3 3])

The result of multiple data sets in one graph plot is shown in Figure 2.3.

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

0 ≤ x ≤ 2π

C
os

in
e 

fu
nc

tio
ns

Typical example of multiple plots

2*cos(x)

cos(x)

0.5*cos(x)

Figure 2.3: Typical example of multiple plots

By default, MATLAB uses line style and color to distinguish the data sets plotted in
the graph. However, you can change the appearance of these graphic components or add
annotations to the graph to help explain your data for presentation.

2.2.5 Specifying line styles and colors

It is possible to specify line styles, colors, and markers (e.g., circles, plus signs, . . . ) using
the plot command:

plot(x,y,style_color_marker)

where style_color_marker is a triplet of values from Table 2.3.

To find additional information, type help plot or doc plot.

17



Table 2.3: Attributes for plot

Symbol Color Symbol Line Style Symbol Marker

k Black − Solid + Plus sign
r Red −− Dashed o Circle
b Blue : Dotted ∗ Asterisk
g Green −. Dash-dot . Point
c Cyan none No line × Cross
m Magenta s Square
y Yellow d Diamond

2.3 Exercises

Note: Due to the teaching class during this Fall Quarter 2005, the problems are temporarily
removed from this section.

18


